

ORIGINE, RECYCLAGE ET MOBILITE VERTICALE DE LA CROUTE CONTINENTALE

Eric LECOIX, Lyc JH Fabre, Carpentras

- I PARTICULARITES DE LA CROUTE CONTINENTALE
- 1 La surface terrestre: répartition bimodale des altitudes
- 2 Rappels sur la structure du globe
- 3 Formation et recyclage de la croûte continentale
- II LA FLOTTABILITE DES CORPS : PRINCIPES PHYSIQUES
- 1 Principe d'Archimède
- 2 Qu'en pense Pascal ?
- III GRAVITE ET GEODESIE
- 1 D'Isaac Newton à Pierre Bouguer
- 2 Les modèles de Pratt et Airy
- 3 Vérification par les données sismiques
- 4 L'anomalie de Bouguer
- 5 Mesures gravimétriques actuelles

IV – REAJUSTEMENTS ISOSTASIQUES ET MOUVEMENTS VERTICAUX

- 1 Principe
- 2 Modélisation analogique
- 3 Modélisations numériques
- 4 Exemples

1. SURFACE TERRESTRE: REPARTITION BIMODALE DES ALTITUDES

Profil altitudinal suivant l'équateur réalisé avec Google Earth

« La statistique des surfaces terrestres de même altitude met en lumière le fait curieux que l'écorce du globe présente deux niveaux nettement prédominants entres lesquels les surfaces d'altitude moyenne sont une minorité.

De ces deux altitudes, la plus élevée répond aux aires continentales, la plus basses aux domaines abyssaux. Pour s'en rendre compte, il suffit de diviser la surface du globe en kilomètres carrés et de classer ces derniers par rang d'altitude.

En portant en abscisses les surfaces et en ordonnées les altitudes on obtient une courbe connue sous le nom de courbe hypsographique. »

A. Wegener "La genèse des continents et des océans", 1912.

1. SURFACE TERRESTRE: REPARTITION BIMODALE DES ALTITUDES

→ Continents et fonds océaniques sont constitués de **matériaux différents**

2. RAPPELS SUR LA STRUCTURE DU GLOBE

2. RAPPELS SUR LA STRUCTURE DU GLOBE

La distinction entre la lithosphère et l'asthénosphère est essentiellement « **thermique** »: -Dans la lithosphère, la chaleur se propage par **conduction**, alors que dans l'asthénosphère la chaleur est transmise par **conduction** mais aussi par **convection**.

-La limite lithosphère/asthénosphère correspond approximativement à **l'isotherme 1 300°C.** La limite inférieure de l'asthénosphère est à -700 km environs.

2. RAPPELS SUR LA STRUCTURE DU GLOBE

Ne pas confondre asthénosphère et LVZ !!!

Vitesse (km/s)

LVZ = Zone de l'asthénosphère (entre -100 et -200 km) où on observe souvent un net ralentissement de la vitesse des ondes sismiques.

La LVZ marque donc la zone sommitale de l'asthénosphère.

2. RAPPELS SUR LA STRUCTURE DU GLOBE

<u>Remarque</u>: La lithosphère océanique est très mince au niveau des dorsales et s'épaissit quand on s'éloigne de la dorsale (sa densité augmente car elle se refroidit)

2. RAPPELS SUR LA STRUCTURE DU GLOBE

Comparaison des caractéristiques de la croûte océanique et continentale

	Epaisseur	Age (MA)	Composition	Densité
			moyenne	moyenne
Croûte	7 à 12	< 200	basaltique	2,9
océanique				
Croûte	30 à 70	3 900	granitique	2,7
continentale		maxi (*)		

(*) Age donné par les zircons (minéraux très résistants, qui perdurent même après érosion de la roche mère)

3. FORMATION ET RECYCLAGE DE LA CROUTE CONTINENTALE

En s'éloignant de la dorsale, **lithosphère océanique** s'épaissit et augmente en densité \rightarrow elle retourne rapidement dans le manteau (Age < 200 MA) au niveau des zones de subduction.

La **lithosphère continentale** conserve une densité plus faible. Elle demeure donc en surface du globe et sa destruction (érosion) est beaucoup plus lente \rightarrow Age plus anciens, jusqu'à 3,9 Ga

3. FORMATION ET RECYCLAGE DE LA CROUTE CONTINENTALE

Age des roches de la croûte continentale

3. FORMATION ET RECYCLAGE DE LA CROUTE CONTINENTALE

Gneiss de Sandriver, Afrique, Zimbabwe (3,8 Ga)

3. FORMATION ET RECYCLAGE DE LA CROUTE CONTINENTALE

Gneiss gris d'Amitsôq au Groenland (3,8 Ga)

3. FORMATION ET RECYCLAGE DE LA CROUTE CONTINENTALE

Gneiss d'Acasta (Canada), 4 Ga

Ces gneiss sont de couleur grise, très déformés, essentiellement constitués de quartz, plagioclases, biotite, hornblende. Pas de feldspaths potassiques. Il s'agit de Tonalites à plagioclase sodique (Trondhjémites) et de Granodiorites (\rightarrow TTG) En comparaison, la croûte continentale moderne a une composition granitique à

granodioritique, à feldspath potassique.

Les zircons de Jack Hills (Australie)

Des zircons ($ZrSiO_4$), ont été découverts dans des vieux grès et des conglomérats à Jack Hills (Australie de l'ouest). Ils proviennent d'une roche qui a été totalement altérée mais ces cristaux ont résisté et se sont trouvés réincorporés dans des roches plus jeunes.

3. FORMATION ET RECYCLAGE DE LA CROUTE CONTINENTALE

Les zircons de Jack Hills (Australie)

Les zircons ont été datés à 4,4 Ga (Wilde et al., 2001).

La datation a été réalisée grâce à l'uranium et au plomb qu'ils contiennent (uranium initial se désintègre en plomb)

Les rapports isotopiques ¹⁸O/¹⁶O élevés de ces zircons, tend à prouver que l'eau était déjà présente sur Terre à l'époque de la formation de ces zircons.

Les zircons de Jack Hills (Australie)

Les zircons de Jack Hills contiennent des inclusions de quartz, feldspath potassique, hornblende, biotite, muscovite...etc, ce qui prouve qu'ils ont une origine continentale.

Volcanisme adakitique

Les Adakites sont des roches découvertes sur l'île d'Adak, dans les Aléoutiennes (Alaska)

Répartition mondiale des principales adakites

Са

Na

Volcanisme adakitique

Les Adakites = laves calco-alcalines particulières, dont la composition se rapproche de celles des TTG de type archéen (peu de K).

Comparaison des compositions chimiques des TTG (champ hachuré) et des adakites (champ clair). Pour une même teneur en SiO2, les adakites sont toujours plus magnésiennes que les TTG, elles mêmes plus magnésiennes que les liquides expérimentaux (champ sombre) (Martin et Moyen, 2002).

Volcanisme adakitique

En Patagonie, la plaque Nazca (au Nord), et la plaque Antarctique (au Sud), séparées par la dorsale (active) du Chili, entrent en subduction sous la plaque Sud-Américaine. Cette subduction est oblique, ce qui fait que l'âge de la croûte qui rentre en subduction (ou sa distance à la dorsale) varie du Nord au Sud. Les adakites sont toujours associées à la subduction d'une croûte océanique jeune (< 30MA)

Volcanisme adakitique

Des expérimentations montrent que la fusion mantellique ne peut donner des adakites. Par contre, la fusion d'amphibolites à grenat donne des liquides magmatiques de composition voisine des adakites. La nature basique des adakites semble montrer qu'elles proviennent de la fusion du basalte océanique hydraté.

3. FORMATION ET RECYCLAGE DE LA CROUTE CONTINENTALE

Pour faire fondre une amphibolite à grenat, il faut se trouver dans une zone assez étroite de l'espace P-T :

- Il faut que l'amphibole (et les autres minéraux hydratés) demeurent stables, c'est à dire qu'on reste à gauche de la courbe D de déstabilisation des minéraux hydratés (actinote, chlorite ...)

- Il faut que le grenat soit stable (faute de quoi les liquides ne sont pas adakitiques), donc il faut être au dessus de la courbe G ;

- Il faut que la fusion (fusion-déshydratation de l'amphibole) puisse se dérouler, donc il faut être à droite de la courbe FDA.

La courbe G correspond à la limite inférieure de stabilité du grenat, H correspond à la disparition de l'amphibole (hornblende).

3. FORMATION ET RECYCLAGE DE LA CROUTE CONTINENTALE

Pour faire fondre une amphibolite à grenat, il faut se trouver dans une zone assez étroite de l'espace P-T :

- Il faut que l'amphibole (et les autres minéraux hydratés) demeurent stables, c'est à dire qu'on reste à gauche de la courbe D de déstabilisation des minéraux hydratés (actinote, chlorite ...)

- Il faut que le grenat soit stable (faute de quoi les liquides ne sont pas adakitiques), donc il faut être au dessus de la courbe G ;

 - Il faut que la fusion (fusion-déshydratation de l'amphibole) puisse se dérouler, donc il faut être à droite de la courbe FDA.

3. FORMATION ET RECYCLAGE DE LA CROUTE CONTINENTALE

Cela ne peut marcher que si on augmente le gradient géothermique de subduction !!!

C'est bien ce qui se passe dans la zone étudiée: la croûte océanique, particulièrement jeune, est anormalement chaude → Fusion possible avant qu'elle se déshydrate complètement !!!

3. FORMATION ET RECYCLAGE DE LA CROUTE CONTINENTALE

Le contexte de formation des adakites se rapproche donc de celui de la croute continentale archéenne !

Genèse de croute continentale à l'Archéen (-4 à -2,5 Ga)

Fusion du basalte possible car il atteint sa température de fusion avant de se déshydrater (gradient géothermique plus élevé qu'actuellement)

→ Granitoïdes de type TTG, enrichis en sodium (croûte continentale primitive)

Archéen : période ou la magmatisme était intense. On suppose que les ¾ de la croûte continentale actuelle a été extraite du manteau à cette époque.

Genèse de croute continentale depuis 2,5 Ga

Gradient géothermique plus faible \rightarrow

Le basalte se déshydrate avant d'atteindre son point de fusion, ce qui empêche sa fusion. L'eau favorise la fusion du manteau.

→ Magmatisme calco-alcalin donnant des granitoïdes enrichis en potassium (croûte « moderne »)

3. FORMATION ET RECYCLAGE DE LA CROUTE CONTINENTALE

Recyclage des croûtes océaniques et continentales (Bilan)

(1): L'altération des basaltes de point chaud produit des argiles (Si, AI) pouvant être intégrées au prisme d'accrétion, à l'origine de nouveaux matériaux continentaux pouvant ensuite se transformer par métamorphisme.

II-LA FLOTTABILITE DES CORPS: PRINCIPES PHYSIQUES

1. PRINCIPE D'ARCHIMEDE

Archimède (287-212 avant JC) : « Tout corps plongé dans un liquide reçoit de la part de ce liquide une poussée de bas en haut égale au poids du volume déplacé »

Cette loi dépend des densités et des volumes des corps

...comment lire son journal sur la mer morte

II-LA FLOTTABILITE DES CORPS: PRINCIPES PHYSIQUES

1. PRINCIPE D'ARCHIMEDE

Poids de l'objet = P = $m_c \cdot g = \rho_c \cdot V_c \cdot g = \rho_c \cdot h \cdot g$ si pour simplifier, largeur et longueur sont supposées égales à l'unité.

De même, la poussée d'Archimède = $P_A = \rho_m \cdot V_m \cdot g$ avec V_m = volume de liquide déplacé $P_A = \rho_m \cdot r \cdot g$

Si P = P_A alors $\rho_c \cdot h \cdot g = \rho_m \cdot r \cdot g \text{ donc } \rho_c \cdot h = \rho_m \cdot r \text{ ou encore } r / h = \rho_c / \rho_m$

2. QU'EN PENSE PASCAL (1623-1662) ?

Dans son théorème sur « l'équilibre des liqueurs » (on dirait maintenant: principe de l'hydrostatique), Blaise Pascal introduit la notion de pression.

Ainsi la pression (force par unité de surface) à la base d'une colonne de liquide = P

 $P = \rho \cdot g \cdot h$ avec h = hauteur de liquide

II-LA FLOTTABILITE DES CORPS: PRINCIPES PHYSIQUES

2. QU'EN PENSE PASCAL ?

A l'équilibre, la pression exercée en P1 est la même qu'en P2 P1=P2 Avec P1= $\rho_c . g . h et P2 = \rho_m . g . r$ Donc $\rho_c . g . h = \rho_m . g . r$ $\rightarrow \rho_c . h = \rho_m . r \rightarrow r / h = \rho_c / \rho_m$

On retrouve les mêmes résultats qu'avec la poussée d'Archimède !

III-GRAVITE ET GEODESIE
Isaac Newton (1643-1727) a formalisé la force gravitationnelle et le champ de pesanteur

Le champ de pesanteur g créé par une masse ponctuelle (ou sphérique) de masse M à une distance d est égal à $g=G \cdot M / d^2$

Avec G = constante de gravitation universelle = 6,67 . 10 $^{-11}$ m³ kg $^{-1}$ s $^{-2}$

Il a calculé que la surface de la Terre (supposée fluide), dont la surface de la mer devait être une bonne approximation, devait avoir la forme d'un ellipsoïde aplati aux pôles.

Pour la France, le géoïde est calé sur un niveau zéro scellé dans le port de Marseille

- Cette surface s'appelle le **géoïde**.
- Sur cette surface, le champ de gravité est plus élevé aux pôles qu'à l'équateur (car on est plus près du centre de la Terre)
- Si on corrige les effets de la latitude (et de l'altitude), g est pratiquement constant sur cette surface de référence.
 Cette surface définit aussi l'horizontale et la verticale à la surface de la Terre.
- Cette surface sert de référence pour toutes les études gravimétriques

Pierre Bouguer (1698 -1758), mathématicien, physicien et hydrographe français.

De 1735 à 1749, il effectue une mission au Pérou, ayant pour but de mesurer un degré d'arc de méridien près de l'équateur.

C'est en effectuant des observations d'ordre gravimétrique en altitude qu'une anomalie le surprend.

Pour réaliser ses mesures avec une grande précision, Bouger a besoin d'une grande précision sur la verticale. Il prévoit donc de faire une correction lorsqu'il réalise ses mesures près des reliefs de la Cordillère des Andes. En effet, selon Newton, les fils à plomb doivent être déviés par rapport à la verticale, à cause de l'excès de masse.

Après vérification grâce à des mesures astronomique, Bouger constate que le fil a plomb n'est pratiquement pas dévié, un peu comme si les montagnes n'avaient pas de masse ! Les montagnes ne pouvant êtres creuses, il ne comprend pas !

...Mais comme ça simplifie ses mesures, il ne cherche pas à comprendre plus que ça! Il faudra attendre 150 ans pour qu'on explique cette anomalie, qui portera son nom « anomalie de Bouger » !!!

Au milieu du 19eme siècle, on a déterminé la masse volumique de la Terre (5520 Kg m3) Comme les roches superficielles sont moins denses (de 2500 à 3000 Kg m3), on suppose qu'une croûte «peu dense» repose sur du matériau plus dense.

Par ailleurs, l'expansion coloniale fait qu'on dispose de mesures de gravité un peu partout dans le globe. On réalise toutes ces mesures en corrigeant les effets de l'altitude et de la latitude.

- Gravité mesurée, sans correction
- Valeur de gravité avec correction d'altitude

Fait surprenant: on s'aperçoit que la gravité est approximativement constante à la surface du globe (à 1/10 000 eme près, pour 90 % de la Terre)

g mesuré

distance

Alors qu'en théorie, on devrait avoir des « creux » et des « bosses » !!!

Pour expliquer que la gravité soit quasi-constante, on doit proposer un modèle qui montre que la masse ne varie pas en fonction de la distance, même si l'altitude varie.

John Henry Pratt (1809-1871)

Georges Biddle Airy (1801-1892)

Dans le modèle de Pratt, on considère des blocs dont la masse volumique varie. Plus les éléments sont denses, plus ils sont minces. Ainsi la différence de topographie ne s'accompagne pas de différence de masse.

On peut définir une surface de compensation où la pression est la même partout.

Dans le modèle de Airy, la masse volumique des blocs ne varie pas. Les blocs, de hauteur variable, « flottent » sur un milieu de densité plus élevée.

Au niveau de la surface de compensation, la pression est la même.

III-GRAVITE ET GEODESIE

2. LES MODELES DE PRATT ET AIRY

Au niveau de la surface de compensation SC1, les pressions sont identiques donc: ρ_c . h_1 = ρ_m . r_1

Au niveau de la surface de compensation SC2, les pressions sont identiques donc: $\rho_c \cdot h_2 = \rho_m \cdot r_2$

La combinaison Pratt-Airy donne une bonne approche de la réalité naturelle de la dualité continent-océan

Au niveau de la surface de compensation SC1, les pressions sont identiques donc: $\rho_c \cdot h_c = (\rho_o \cdot h_o) + (\rho_m \cdot r_1)$ si on néglige la masse de l'eau.

$$\rightarrow \rho_c \cdot h_c = (\rho_o \cdot h_o) + (\rho_m \cdot (h_c - h_o - a_1))$$

$$\rightarrow$$
 2,7. 35 = (2,9. 7) + (3,3 . (35 - 7 - a_1))

$$\rightarrow$$
 a₁ = 5,5 Km

Un continent « standard » constitué d'une croute de 35 Km d'épaisseur domine les plaines abyssales de 5,5 Km

La combinaison Pratt-Airy donne une bonne approche de la réalité naturelle de la dualité continent-océan

Au niveau de la surface de compensation SC2, les pressions sont identiques donc: $\rho_c \cdot h_c = (\rho_o \cdot h_o) + (\rho_m \cdot r_2)$ si on néglige la masse de l'eau. Le même calcul pour une chaine de montagne dont l'épaisseur est doublée (70 Km) donne une altitude a₂ de 12,5 Km.

Application: Utiliser un tableur pour déterminer la profondeur du Moho (profondeur de la racine crustale) au niveau d'une chaîne de montagne.

Pour une surface de compensation donnée, la pression à la base de la croute (point x) est la même à la même profondeur pour le bloc de référence (point y) On a donc: $\rho_c \cdot (a + h_c + r) = (\rho_c \cdot h_c) + (\rho_m \cdot r)$

 $\rho_{c} . (a + h_{c} + r) = (\rho_{c} . h_{c}) + (\rho_{m} . r)$

2,7 . (a + 35 + r) = (2,7 . 35) + (3,3 . r) donc 2,7 (r + a) = 3,3 r donc 2,7 a = (3,3 -2,7) r Donc r = 2,7 a / 0,6

En connaissant l'altitude a, on peut donc déterminer l'épaisseur de la racine crustale r

III-GRAVITE ET GEODESIE

2. LES MODELES DE PRATT ET AIRY

Avec Google Earth, on peut réaliser un profil topographique à travers la Alpes

GOOGLE EARTH

On peut relever les altitudes tous les 25 Km sur une distance de 150 Km.

Distance en Km	0	25	50	75	100	125	150
Altitude en m	688	1159	1924	2172	2066	814	308

Les valeurs peuvent être importées dans un tableur afin de construire le modèle d'Airy correspondant.

Distance en Km	0	25	50	75	100	125	150
Altitude en m	688	1159	1924	2172	2066	814	308

Blocs		1 (ref)	2	3	4	5	6	7	8
a = altitude (m)		0	688	1159	1924	2172	2066	814	308
a = altitude (km)		0,00	0,69	1,16	1,92	2,17	2,07	0,81	0,31
épaisseur moyenne de la croûte									
(km)		35,00	35,00	35,00	35,00	35,00	35,00	35,00	35,00
r = épaisseur de la racine crustale									
(km)	r = 2,7 a / 0,6	0,00	3,72	6,26	10,39	11,73	11,16	4,40	1,66
m = épaisseur manteau (km)	m = 70 - 35 -r	35,00	31,28	28,74	24,61	23,27	23,84	30,60	33,34
e = épaisseur totale croûte (Km)	e = 35 + a + r	35,00	39,40	42,42	47,31	48,90	48,22	40,21	36,97

Les valeurs de « e » montrent bien que la croûte est épaissie dans la zone centrale (Moho à près de 50 km de profondeur (au lieu de 35 Km)

2. LES MODELES <u>DE PRATT ET AIRY</u>

a = altitude (km)

- épaisseur moyenne de la croûte (km)
- r = épaisseur de la racine crustale (km)
- m = épaisseur manteau (km)

THE ECORS-CROP ALP DEEP SEISMIC TRAVERSE

la réalité:

crustale.

3. VERIFICATION PAR LES DONNEES SISMIQUES

THE ECORS-CROP ALP DEEP SEISMIC TRAVERSE

Mais comment obtient-on un profil sismique ?

Il faut étudier la propagation des ondes sismiques et mesurer leur vitesse sous les Alpes.

Activité : Estimation de la profondeur du Moho à partir de données sismiques

→ 1ere possibilité: en utilisant la banque sismique de **sismolog**

→ 2eme possibilité: avec les outils edusismo (seisgram, educarte)

PRINCIPE : Pour chaque site d'étude, on peut définir un épicentre de séisme et une station d'enregistrement. La distance épicentre - station (Δ) et la profondeur du foyer sismique (h) sont connus (déterminés à partir de la confrontation de plusieurs sismogrammes)

Le schéma suivant nous permet de calculer l'épaisseur de la croûte terrestre *H* à partir de la différence des temps d'arrivée de l'onde première (onde *P*) et de l'onde *PMP* qui est réfléchie par le Moho :

Calcul de la profondeur du Moho

Calcul de la position du point de réflexion

AB représente la distance épicentre, point de réflexion :

$$\frac{H-h}{2H-h} = \frac{AB}{\Delta} d'où AB = \frac{H-h}{2H-h} \Delta$$

D'après: <u>http://www2.ac-lyon.fr/enseigne/biologie/spip.php?article176</u>

Pour calculer la profondeur du Moho (H) entre un épicentre et une station donnée, il suffit de mesurer δt sur le sismogramme, c'est-à-dire le retard en secondes entre les ondes des ondes PMP (réfléchies par le Moho) et les ondes directes P.

Pour accéder aux données sismiques, aller dans le menu « fenêtres » puis « traces ». Il est alors possible d'ouvrir les sismogrammes en sélectionnant un séisme (ils sont classés par date et localité) puis en cliquant sur « étudier »

0	Liste des événements									×									
[Localisation	Date beure	Туре	Réseau	Latitude	Longitude	Profondeur	Magnitude		1									
	Isère, France	08/09/1995 16:46:57	P	SISMALP	45.20	5.89	7	2.5											
	NE Guadeloupe	08/03/1995 03:45:59	Ť	SISMALP	16,55	-59,57	15	6,3											
	Bovaca/Casanare, Colo	19/01/1995 15:05:03	Ť	SISMALP	5.07	-72,92	18	6,4											
	Honshu, Japon	16/01/1995 20:46:51	Т	SISMALP	34,54	135,00	16	6,4											
	Haute-Savoie, France	14/12/1994 08:55:59	P	SISMALP	45,96	6,41	11	5,1											
	Guerrero, Mexique	10/12/1994 16:17:41	Т	SISMALP	18,23	-101,34	67	6,5											
	NE îles Baléares, Espagne	24/09/1994 17:55:00	Р	SISMALP	40,95	4,70	33	5,0											
	Berne, Suisse	22/09/1994 04:08:46	Р	SISMALP	46,60	7,38	8	3,4											
	Vanuatu	11/09/1994 12:01:13	Т	SISMALP	-16,00	166,66	33	5,4											
	Frioul, Italie	20/04/1994 21:25:25	Р	SISMALP	46,29	12,61	10	4,3											
	Ain/Savoie, France	03/02/1994 03:46:00	Р	SISMALP	45,63	5,66	10	2,7											
	Californie, Etats-Unis	17/01/1994 12:30:55	Т		F 010544	021													
	Brescia, Italie	09/12/1993 18:16:51	P	ur fraces	- [310311	03.]													
1	Knone, France Mabarashtra Jada	29/11/1993 21:15:01	۲ T	<u>F</u> ichier	<u>S</u> ignal <u>D</u>	épouilleme	nt <u>L</u> ocali:	ser S <u>o</u> lutio	ons ?										
	Manarashtra, Inde Ain France	29/09/1993 22:25:48	D D	an 1			·												
	Shaha Zaire	20/12/1992 03:14:43	г Т		🕅	Alli- Alli	2 🎡 🖗	8 1854											
l	Xinjiana Chine	21/05/1992 03:57:20	Ť	7		da. da													
	Liechtenstein	08/05/1992 06:44:38	P	Nombre	ede	062311/	/05/1991 18:20:	58.508	and and re-										1
	Erzincan, Turquie	13/03/1992 17:18:40	T	traces	4	👤 🗕 128		A STATE AND A		با با و الدو اطا	ويقفعوا ومعامية	an tanan shara							
1	Isère, France	09/03/1992 01:54:34	P			128		ta autoria da	اللهم الأليا	الأبتار إمرال	Langenary	a state in the		Nie of a Total					
1	Bouches-du-Rhône, France	21/02/1992 12:08:17	Р	<u>Z</u> oom				Barelland I	1999 (P. 1997) 1997 - 1997 (P. 1997)	late e									
1	Dorsale arctique oriental	17/02/1992 00:01:56	т			SURE 11	/05/1991 19:20-	59.010											۲
	Pakistan	30/01/1992 05:22:01	Т	Y i i i			0371331 10.20.			i ti le m t									
	Mer Ligurienne	21/01/1992 01:21:42	Р	Amplituc	lo	- 128		_UNION NO M	14 U. U. U. U.	MALINA, UNA	Allohanhanh	Advantation	Annanasa	al manufar					
	Hautes-Alpes, France	14/01/1992 05:43:50	Р	Amplicac	ie.			- AND AND A DATA	in Allen	INTERVIE	is for the day for the	Hickory	a and a fit waters to						
	Iles Kouriles, Russie	17/12/1991 06:38:16	Т					- Ilin , talind,		վեւտե									
	Antalya, Turquie	05/12/1991 20:21:54	Т			JAUF 11/	05/1991 18:20:	59.686	10. ni 1 -	1									
				Traces	fficháoc	120		le constra o		المالية الم									
				Iraces a	monees	- 120			U. I. MY		and the second	www.holes	Antonio mana	بسيميم	A				
				■ OG23		▲128		a standard a	u i di likati	Links to take	a de la mare								
				SURF															
						CBB 11/0	5/1991 18:20:5	3.834		1.0									
					,	- 128		الداريا اللا	161 161 1	li de la c	1								
				✓ 0G21		.120						a har	- har man his start and		M				
				✓ 0629		- 120		L. L. Leviller		A Marcal L	1.1.1								
				🛛 🗹 OG14	ł į			14		1.00									
				🛛 🗹 OG18		21'	03 06 0	09 12 1	5 18	21 2	4 27	30	33 36	39	42	45	48 5	1 54	
				○ 0G19		~	I Î	I Î Î	i i		<u> </u>	Ē	1 1	ΞĨ.	Ē	- Ē	î	I Î	_

Zoom permet de modifier l'échelle de temps

Amplitude permet de modifier l'échelle verticale

Pour repérer les ondes P et S, aller dans le menu « solutions » et choisir « corriger dépouillements ». Les ondes PMP à repérer sont forcément entre les ondes P et S.

Pour calculer le délai P-PMP, cliquer sur le sismogramme puis déplacer la ligne verticale. Le temps s'affiche en haut à droite du sismogramme. Il suffit de repérer à l'aide de la ligne verticale le début des ondes P, le début des ondes PMP, de relever les temps correspondants et faire la différence.

Exemple : Cuneo 11/05/1991

Affichage des épicentres

Aller dans le menu « séismes » de la page principale de SISMOLOG puis cocher « base de données ». Les foyers sont indiqués par un point blanc. Pour afficher les informations, aller dans le menu « affichage » puis choisir « afficher les infos ». Les indications apparaissent alors quand on survole un épicentre avec la souris (date, localisation, magnitude...etc)

Affichage des stations d'enregistrement

Menu « affichage » puis cocher « stations »

Choix des enregistrements

Pour faciliter la tâche des élèves, on veillera à identifier au préalable les enregistrements les mieux exploitables.

11/05/1991	23/04/1991	29/11/1993	09/03/1992	19/03/1991	07/02/1991	28/12/1992
Cuneo, Italie	neo, Italie Alpes de Hte Provence		Isère	Vaud, Suisse	Isère	Ain
OG14	RSL	SSB	OG04	RSL	CCB	OG09

Calculs

De même, des calculs automatiques pourront s'envisager à partir d'un grille mise à la disposition des élèves

L'élève saisi les δ t mesurés ici

Les résultats (H) et (AB) s'affichent ici

×	Microsoft Excel - calcul	_moho_2012											
:2	Eichier Edition Afficha	ge <u>I</u> nsertion F	orma <u>t O</u> utils <u>D</u> on	nées Fe <u>n</u> êtr	e <u>?</u>					Tapez ur	e question		
10) 💕 🖬 🖪 🔒 🕼 🕯	🙇 🖻 - 🔊 -	Ε 😣 Σ - 🛓	I 🛄 🕜	Times N	ew Roman	- 10 - 0	G I S		e 🕎 €	建 🗉 🗸 🖄		
	121 🔻 🏂												
	A	В	С	D	E	F	G	Н	I	J	K		
1	Calcul de la prof	ondeur du l	Moho										
2													
3	Entrer les données dans le	es cases jaunes, le	e calcul est automat:	ique et appara	ît dans les cas	ses vertes							
4	Séismes			11/05/1991	23/04/1991	29/11/1993	09/03/1992	19/03/1991	07/02/1991	28/12/1992			
5	Localisation			Cuneo, Italie	Alpes de Hte Provence	Rhône	Isère	Vaud, Suisse	Isère	Ain			
6	Station sismo			OG14	RSL	SSB	OG04	RSL	CCB	OG09			
7	Profondeur du foyer en kr	n		7,00	10,00	10,00	6,00	11,00	11,00	10,00			
8	Distance épicentrale en kr	n		107,10	135,80	49,70	95,40	82,00	99,90	37,00			
9	Vitesse des ondes P en kr	n.s ⁻¹		6,25	6,25	6,25	6,25	6,25	6,25	6,25			
10	Retard des ondes PMP en	i secondes par rap	port aux ondes P	→									
11													
10	Profondeur du Moho en k	un	H -	▶ 7,0	10,0	10,0	6,0	11,0	11,0	10,0	0,0		
12													
+4	Calcul de la position du p	oint de réflexion d	les ondes sur le Mo	ho									
15													
16	Il dépend de la profondeu	r du foyer , de la p	rofondeur du Moho	o et de la dista	nce épicentra	le							
17													
18	Distance épicentre-point (de réflexion en Kn		0,0	0,0	0,0	0,0	0,0	0,0	0,0			

<u>Résultats</u>

On peut fournir à l'élève une carte où ont été reportés stations et les épicentres. Il n'a plus qu'à compléter le document en positionnant les réflecteurs et en indiquant la profondeur de Moho H

EXEMPLE AVEC SISMOLOG

<u>Résultats</u>

On peut fournir à l'élève une carte où ont été reportés stations et les épicentres. Il n'a plus qu'à compléter le document en positionnant les réflecteurs et en indiquant la profondeur de Moho H

III-GRAVITE ET GEODESIE

4. L'ANOMALIE DE BOUGER

Données gravimétriques concernant les Alpes

Sous les alpes, on constate une anomalie gravimétrique négative !

Comment peut on obtenir ce résultat alors qu'on a vu qu'après correction d'altitude, la gravité est globalement constante à la surface du globe !!!

III-GRAVITE ET GEODESIE

4. L'ANOMALIE DE BOUGER

Alors... c'est quoi, cette anomalie de Bouger ?

Il faut revenir aux corrections que l'on établit lorsqu'on détermine la gravité :

1. On effectue une première correction d'altitude (déjà vu !)

- Gravité mesurée, sans correction
- Valeur de gravité avec correction d'altitude (ou à l'air libre)

Dans cette correction, on fait comme si la mesure avait été faite au niveau du géoïde de référence (niveau de la mer). On fait comme si la montagne avait été aplanie, comprimée mais en gardant sa masse.

2. Mais quand on détermine la valeur de la gravité, on effectue aussi un autre correction: on néglige les effets de la gravité lié aux masses en excès (montagnes et reliefs environnants). On parle de correction de plateau et de correction topographique

Valeur de gravité avec correction d'altitude (ou à l'air libre)

2. Mais quand on détermine la valeur de la gravité, on effectue aussi un autre correction: on néglige les effets de la gravité lié aux masses en excès (montagnes et reliefs environnants). On parle de correction de plateau et de correction topographique

Valeur de gravité avec correction de plateau et topographique

III-GRAVITE ET GEODESIE

4. L'ANOMALIE DE BOUGER

- Gravité mesurée, sans correction
- Valeur de gravité avec correction d'altitude (ou à l'air libre)
- Valeur de gravité avec correction de plateau et topographique

Anomalie (-)

III-GRAVITE ET GEODESIE

L'anomalie de Bouger = variations de la gravité (par rapport à la gravité moyenne) après toutes ces corrections (pour simplifier latitude, altitude, de plateau et topographique)

4. L'ANOMALIE DE BOUGER

L'anomalie de Bouger révélée dans les Alpes met donc bien en évidence un excès de matériel de faible densité (croûte) au dépends du manteau. Cela correspond bien à l'approfondissement du moho révélé par les études simiques

THE ECORS-CROP ALP DEEP SEISMIC TRAVERSE

CONCLUSION : Après les corrections de plateau et de topo, on accentue les différences entre la gravité mesurée (proche de la gravité théorique) et la gravité calculée (après corrections).

Ce résultat montre bien que la Terre est en équilibre isostasique (ou hydrostatique, la rigueur) et que la structure profonde compense les inégalités topographiques:

A une montagne (excès de masse superficiel) correspond un épaississement crustal (excès de corps peu dense) Inversement, à une dépression (déficit de masse superficiel) correspond un amincissement crustal et donc un excès de masse profond.

Actuellement, les mesures gravimétriques sont réalisées à partir d'avions ou satellites. Les valeurs mesurées correspondent aux valeurs corrigées à l'air libre.

Les mesures de Topex-Poséidon permettent de déterminer avec une précision centimétrique le niveau des océans. Sous les continents, la précision est de l'ordre de quelques mètres.

La forme du géoïde a pu être affinée par l'analyse des orbites des satellites artificiels (dépendent du champ de pesanteur)

Le géoïde n'a pas de représentation géométrique simple car la Terre n'est pas totalement homogène.

Satellite GRACE de la NASA (Gravity Recovery and Climate Experiment)

Des données récentes montrent des variations temporelles de gravité. Cela est dû essentiellement à des modifications au cours du temps de la répartition des masses en profondeur: hétérogénéités de densité dans le manteau liées aux phénomènes de convection, aux subductions des plaques océaniques froides donc denses. On peut aussi par ces mesures révéler des phénomènes plus superficiels (fonte des glaces polaires (170 Km3 de glace par an en moyenne))

Satellite GRACE de la NASA (Gravity Recovery and Climate Experiment)

Résultats des mesures au niveau des continents de 2002 à 2009

La forme du géoïde a pu être affinée par l'analyse des orbites des satellites artificiels (dépendent du champ de pesanteur)

Le géoïde n'a pas de représentation géométrique simple car la Terre n'est pas totalement homogène.

Satellite GOCE (Gravity Field and Steady State Ocean Circulation Explorer) de l'ESA

1. PRINCIPE

Si on admet l'équilibre isostasique, on peut considérer que toute modification d'ordre topographique (érosion, remplissage sédimentaire, fonte de glace... etc) qui entraine une rupture de cet équilibre doit être compensé par des réajustements se manifestant principalement par des mouvements verticaux de matière.

Avec de l'eau, les réajustements sont instantanés. Mais si on augmente la viscosité du milieu, les réajustements deviennent plus lents.

2. MODELISATION ANALOGIQUE

...D'ailleurs, la croûte continentale (ou la lithosphère continentale), ce n'est pas ça !!!

Pour éviter la persistance de cette représentation fausse chez les élèves, on utilisera de préférence pour les modélisations des milieux de viscosité importante (pas de liquide)

2. MODELISATION ANALOGIQUE

Si dC = 2,7 dM = 3,5 et h connu, on peut déterminer r et a

2. MODELISATION ANALOGIQUE

Dans la modélisation, pour représenter la croûte continentale, on choisira un bois de densité telle que ρ_c / ρ_m se rapproche de 0,77. Comme la densité du gel de tapioca ρ_m est proche de 1, le bois doit avoir une densité ρ_c proche de 0,77

Bois	Masse volumique (g/cm3)
Liège	0,24
Peuplier	0,45
Pin	0,5
Tilleul	0,55
Melèze	0,6
Bouleau	0,65
Platane	0,65
Acajou	0,7
Chataîgner	0,7
Chêne	0,8
Hêtre	0,8
Charme	0,82
Frêne	0,84
Ebène	1,15

Pour le manteau, on peut obtenir un milieu de viscosité élevée en utilisant un gel de tapioca bouilli.

2. MODELISATION ANALOGIQUE

2. MODELISATION ANALOGIQUE

Pour le gel épais, l'état d'équilibre isostasique est atteint au bout de plusieurs heures

REMARQUES :

-la densité du bois augmente lorsqu'il est hydraté. Il est donc préférable d'utiliser des bois vernis

-Si on souhaite déterminer avec précision la masse volumique du gel de tapioca, utiliser un bécher ou une éprouvette graduée (pesée à vide, mesure directe du volume puis 2eme pesée)

-Si on souhaite déterminer avec précision la masse volumique du bois utilisé, calculer le volume du bloc après mesure des arêtes puis peser.

-Choisir un bloc avec h élévé si on veut mesurer plus facilement les variations des hauteurs a et r (partie superficielle / racine crustale)

-Plus le gel est épais, plus l'équilibre isostasique est lent à s'établir (parfois plusieurs heures !!!). Cela est intéressant car il permet de prendre conscience de la **lenteur des phénomènes de réajustement** (plusieurs MA) lorsque les milieux sont solides (croute et manteau)

2. MODELISATION ANALOGIQUE

Comment modéliser un réajustement isostasique après l'érosion d'une chaîne de montagne ?

Equilibre isostasique

2. MODELISATION ANALOGIQUE

Suppression de matériau (érosion)

2. MODELISATION ANALOGIQUE

Réajustement isostasique

2. MODELISATION ANALOGIQUE

Réajustement isostasique

2. MODELISATION ANALOGIQUE

Réajustement isostasique

2. MODELISATION ANALOGIQUE

De l'état 1 à 3, h ne varie pas.

Seul le rapport r/a évolue. L'équilibrage isostasique consiste à augmenter a au détriment de r. On assiste ainsi à une remontée de la racine crustale.

3. MODELISATIONS NUMERIQUES

3. MODELISATIONS NUMERIQUES

SIMULAIRY

3. MODELISATIONS NUMERIQUES

On peut dessiner un profil de croûte à la souris. Ici on a une chaîne de montagne avec une altitude maxi de 1500 m environ

Les altitudes peuvent être visualisées grâce au tableau de bord. On peut par exemple identifier la profondeur de la racine crustale.

Dans le menu « calculs », on peut simuler une érosion:

-Soit pas à pas, en modifiant le relief à la souris (« simuler l'érosion »)

Dans ce cas, il faut cliquer sur « réajustement isostasique » après chaque érosion

-Soit visualisr le phénomène sous forme d'une animation (« simuler l'érosion d'un massif montagneux – animation »)

SIMULAIRY

4. EXEMPLES

Conséquences de la fonte des glaces en Scandinavie ou au Canada

Si les glaciers « chargent » un continent, il s'enfonce. Quand les glaciers fondent, il remonte par réajustement isostasique.

Depuis 18 000 ans, le Canada a déjà fait les ¾ de sa remontée. A l'échelle géologique, l'établissement du nouvel équilibre se fait en quelques dizaines de milliers d'années.

Ce résultat permet d'estimer la viscosité du manteau (10²² plus visqueux que l'eau !)

4. EXEMPLES

Conséquences de la fonte des glaces en Scandinavie ou au Canada

Plages « soulevées » en baie d'Hudson

4. EXEMPLES

Conséquences de la fonte des glaces en Scandinavie ou au Canada

Plages « soulevées » en baie d'Hudson

z Data SIO, NOAA, U.S. Navy, NGA, GEBCO © 2012 Google © 2012 Cnes/SpotImage

4. EXEMPLES

Conséquences de la fonte des glaces en Scandinavie ou au Canada

Variations relatives du niveau marin

sources : Permanent Service for Mean Sea Level - United Kingdom

4. EXEMPLES

Conséquences de la fonte des glaces en Scandinavie ou au Canada

Variations relatives du niveau marin

Extension de la calotte glaciaire depuis 20 000 ans

4. EXEMPLES

Conséquences de la fonte des glaces en Scandinavie ou au Canada

Modélisation possible avec simulairy

- Dans le menu « calculs » \rightarrow « simuler une glaciation » puis dessiner à lasouris la calotte de glace

 Par survol de la souris au dessus de la croûte, on peut vérifier dans le tableau de bord si on est à l'équilibre isostasique (vert) ou pas (rouge)

-Réaliser un réajustement isostasique (cliquer sur « réajustement isostasique »). On remarque que la croute s'enfonce sous le poids de la glace

-Dans le menu « calcul » : choisir « simuler une fonte glaciaire » puis cliquer sur « réajustement isostasique »: la croûte se soulève par réajustement isostasique

Tableau de bord Index N° 14 Altitudo au cursour : 6455 m

n au curseur :

4. EXEMPLES

Phénomène de subsidence dans un bassin sédimentaire

A l'équilibre isostasique, une dépression topographique (croûte en moins) est compensée par une remontée du moho (manteau en plus). Ainsi la croûte s'amincit forcément par le bas et par le haut.

Les pressions en P1 et P2 étant identiques, on a : $\rho_c \cdot h = (\rho_m \cdot r) + (\rho_c \cdot (h_c - a - r))$ 2,7.35 = (3,3 · r) + (2,7 · (35 - a - r)) Après simplifications, on a r = 4,5 a Donc une dépression de (a) mètres fait remonter le moho de (4,5 a) mètres.

4. EXEMPLES

Phénomène de subsidence dans un bassin sédimentaire

Lorsque des sédiments s'accumulent dans cette dépression, on assiste par compensation isostasique à un enfoncement progressif du fond du bassin et du moho jusqu'à ce que celui-ci atteigne sa profondeur normale.

Les calculs montrent qu'à chaque fois qu'une cause quelconque (amincissement...) engendre une dépression topographique, la sédimentation multiplie par de 5,5 la profondeur initiale de la dépression une fois l'équilibre isostasique atteint.

4. EXEMPLES

Phénomène de subsidence dans un bassin sédimentaire

Modélisation du phénomène par simulairy

On dessine un profil de croute équilibrée avec une dépression topographique. On remarque que le moho remonte à l'aplomb de la depression.

Dans calculs, choisir « simuler un dépôt sédimentaire » puis dessiner à la souris les sédiments jusqu'à ce que le bassin soit comblé.

Cliquer sur « réajustement isostasique ». On voit le fond du bassin s'enfoncer, ainsi que le moho.

L'enfoncement permet d'ajouter des sédiments. On peut recommencer les étapes « dépôt sédimentaire » puis « réajustement isostasique » jusqu'à retrouver une profondeur quasi-normale du moho.

4. EXEMPLES

Expliquer l'affleurement de roches formées en profondeur

Exemple 1 : roches métamorphiques HP BT dans les Alpes Franco-Italiennes

Exemple: Eclogites du Mont Viso

Expliquer l'affleurement de roches formées en profondeur

4. EXEMPLES

Métagabbro à smaragdite (proche jadéite)

Eclogite à grenat et omphacite (proche jadéite)

-Datation absolue éclogites Viso = autour de 50 MA

4. EXEMPLES

Expliquer l'affleurement de roches formées en profondeur

-Minéraux : jadéite, grenats = stables au-delà de 40 Km de profondeur

4. EXEMPLES

Expliquer l'affleurement de roches formées en profondeur

-Minéraux : jadéite, grenats = stables au-delà de 40 Km de profondeur

4. EXEMPLES

Expliquer l'affleurement de roches formées en profondeur

Pour que de telles roches affleurent en surface, il faudrait éroder au minimum 40 Km de roches en 50 MA !!! Ce qui est totalement irréaliste !!!

Pour info

(source: http://svt.ac-montpellier.fr/spip/spip.php?article369)

Calcul basé sur l'estimation des sédiments déposés par le Rhône et le Pô:

- Volume total des sédiments (Rhône + Pô) = 1 255 160 Km³
- Surface des Alpes = 179 666 Km2
- Epaisseur des roches supprimées par l'érosion : 1 255 160 Km³ / 179 666 Km2 = 6,98 Km

→ L'érosion moyenne depuis 50 MA est de 6,98 / 50.10 ⁶ = 1,397. 10 ⁻⁷ Km = 0,14 mm/an

4. EXEMPLES Expliquer l'affleurement de roches formées en profondeur

Pour info: Combien faut-il de temps (géologique) pour effacer un relief montagneux?

L'étude comparative des volumes de sédiments dans les bassins océaniques issus de l'érosion de diverses chaînes de montagnes anciennes et des volumes restants des chaînes a permis d'en arriver à une certaine approximation exprimée par cette courbe.

4. EXEMPLES

Expliquer l'affleurement de roches formées en profondeur

On peut, par modélisation, étudier comment l'érosion couplée à réajustement isostasique contribue à l'exhumation de roches profondes.

D'après les calculs précédents : r = 2,7 a / 0,6

Ce qui revient à dire que 200 m d'érosion en surface fait remonter du matériel crustal profond de 800 m environ.

... Mais cela suffit-il ?

Expliquer l'affleurement de roches formées en profondeur

SIMULAIRY

Modélisation avec simulairy

Avec simulairy, on dessine une croûte équilibrée épaissie.

Altitude maxi = 4000 m environs

On repère le niveau de stabilité des éclogites (40 Km de profondeur) 🦲

Expliquer l'affleurement de roches formées en profondeur

Dans le menu « calculs », on simule l'érosion avec compensation isostasique.

Résultats:

Le processus a exhumé les roches situées initialement à 20 Km de profondeur, mais c'est insuffisant pour des roches situées à 40 Km !

Par ailleurs, le logiciel indique en fin d'animation que 88 MA sont nécessaires pour l'érosion totale du massif !!! Or les éclogites sont plus jeunes (50 MA)

SIMULAIRY

Conclusion:

Le processus d'érosion, même couplé à un réajustement isostasique, ne peut expliquer seul l'exhumation des roches HP BT alpines !!!

Expliquer l'affleurement de roches formées en profondeur

On peut cependant trouver sur le terrain des indicateurs minéralogiques confirmant l'hypothèse d'une « remontée » de roches d'origine profonde (rétrométamorphisme)

Eclogite du Passo Gallarino (Viso)

1 : Grenat 2 : Actinote, Chlorite

4. EXEMPLES

Expliquer l'affleurement de roches formées en profondeur

On peut alors rechercher sur le terrain des indicateurs minéralogiques confirmant l'hypothèse d'une « remontée » de roches d'origine profonde (rétrométamorphisme)

La disposition en auréole de minéraux typique du domaine des schistes verts autour des grenats (domaine des éclogites) est compatible avec l'hypothèse d'une remontée lente de matériaux profonds.

Ce cas de « rétro-métamorphisme » n'est pas exceptionnel dans le massif alpin

Expliquer l'affleurement de roches formées en profondeur

LIThothèque

Exemple 2 : roches métamorphiques ou granites d'anatexie dans les Maures

Micaschsites, gneiss (MP-MT) (Plage du Canadel, plage de Saint Clair)

<u>http://lithotheque.ac-aix-marseille.fr/Affleurements_PACA/83_maures/83_maures_stclair_index.htm</u> <u>http://lithotheque.ac-aix-marseille.fr/Affleurements_PACA/83_maures/83_maures_canadel_index.htm</u>

4. EXEMPLES

Expliquer l'affleurement de roches formées en profondeur

Carte métamorphique du Massif des Maures-Tanneron (Rolland et al., 2009)

Les isogrades correspondent à des contacts structuraux importants et définissent une succession barrovienne (MP-MT) d'Ouest en Est. Deux domaines principaux sont distingués.

lithothèque

4. EXEMPLES

Expliquer l'affleurement de roches formées en profondeur

Expliquer l'affleurement de roches formées en profondeur

Exemple 2 : roches métamorphiques ou granites d'anatexie dans les Maures

Granites d'anatexie, migmatites (Plan de la Tour, Reverdit)

<u>Li</u>thothègue

http://lithotheque.ac-aix-marseille.fr/Affleurements PACA/83 permien argens/granite planettes.htm http://lithotheque.ac-aix-marseille.fr/Affleurements PACA/83 maures/83 maures reverdit index.htm

4. EXEMPLES

Expliquer l'affleurement de roches formées en profondeur

Carte métamorphique du Massif des Maures-Tanneron (Rolland et al., 2009)

Les isogrades correspondent à des contacts structuraux importants et définissent une succession barrovienne (MP-MT) d'Ouest en Est. Deux domaines principaux sont distingués.

4. EXEMPLES

Expliquer l'affleurement de roches formées en profondeur

Lithothèque

Expliquer l'affleurement de roches formées en profondeur

Exemple 2 : roches métamorphiques ou granites d'anatexie dans les Maures

La coexistence à l'affleurement de roches métamorphiques formées à des profondeurs différentes

Dans le massif des Maures, il y a coexistence à l'affleurement de roches métamorphiques qui se sont formées à des profondeurs différentes : schistes, gneiss, migmatites.

Expliquer l'affleurement de roches formées en profondeur

Expliquer l'affleurement de roches formées en profondeur

SIMULAIRY

Modélisation avec simulairy

On dessine une croûte équilibrée épaissie. On repère le niveau de stabilité des différentes roches.

Expliquer l'affleurement de roches formées en profondeur

Dans le menu « calculs », on simule l'érosion avec compensation isostasique.

Après réajustement, on observe à l'affleurement les schistes et les gneiss, comme sur la carte. Le processus érosion + compensation isostasique ne suffit pas pour expliquer l'affleurement des migmatites. Des phénomènes tectoniques ont dû aussi jouer.

SIMULAIRY

Des phénomènes tectoniques peuvent aussi favoriser l'exhumation des roches formées en profondeur (Cas des Alpes)

Dans les chaines de montagne, on vient de voir que l'érosion joue un rôle mineur dans l'exhumation des roches profondes.

Par contre, les grands chevauchements peuvent ramener des roches profondes sur des roches plus superficielles.

Le profil sismique ECORS révèle la structure de la chaîne en « écailles » superposées, correspondant à diverses unités qui se chevauchent les unes sur les autres

Exemple:

-Front pennique qui pose les roches métamorphiques du Briançonnais sur les roches moins métamorphiques du Dauphiné.

Panorama vu du col du Lautaret

Panorama vu du col du Lautaret

Synthèse: Evolution géodynamique de la chaîne alpine

Ainsi les chevauchements épaississent la croute tout en favorisant la remontée de matériaux profonds.

Expliquer l'affleurement de roches formées en profondeur

Des phénomènes tectoniques peuvent aussi favoriser l'exhumation des roches formées en profondeur (Cas particulier des métaquartzites à coésite)

Métaquartzites à grenats et coésite

Expliquer l'affleurement de roches formées en profondeur

Beaux échantillons de métaquartzite avec grenats pyrope pluricentimétriques !

Expliquer l'affleurement de roches formées en profondeur

La présence de coésite indique un faciès d'ultra haute pression (celles qui règnent à 100 Km de profondeur). Les études géochimiques montrent que ce matériau serait d'origine continentale (ce n'est pas une ophiolite). On peut difficilement envisager un épaississement crustal de 100 Km ! On doit supposer donc qu'une partie de la croûte continentale est entrée en subduction (probablement forcée car densité faible)

Expliquer l'affleurement de roches formées en profondeur

Température

°C

900

Qz

Le quartz est en auréole autour de la coésite, il est donc postérieur à la coésite. Le grenat est fracturé: cette fracturation s'est faite lors de l'augmentation de volume du à la transformation quartz \rightarrow coésite. On peut donc proposer le scénario d'évolution P T ci contre

COMPLEMENT

Expliquer l'affleurement de roches formées en profondeur

On peut alors imaginer un scénario géodynamique:

-Subduction continentale forcée
-Collision avec écaillage crustal
-Remontée rapide du bloc crustal Dora Maira,
facilité par les chevauchements et la densité
faible du matériel crustal.

Expliquer l'affleurement de roches formées en profondeur

Quelques modèles faisant intervenir le fonctionnement des prismes d'accrétion (d'après ENS Lyon)

<u>RAPPEL</u>: Le prisme se forme par accumulation de sédiments pélagiques qui sont raclés par l'intermédiaire d'un butoir rigide (modifié d'après von Huene et al. (1991)).

(A)- partie superficielle du prisme formée par accrétion frontale

(B)- partie profonde du prisme formée par sous-placage de matériel pélagique.

Les Schistes lustrés des Alpes occidentales, constitués de métasédiments métamorphisés dans un contexte HP-BT, représentent un paléo-prisme d'accrétion.

Minéraux:

lawsonite, zoisite, glaucophane, omphacite.

On y trouve des reliques de croute océanique métamorphisée (serpentinites, métagabbros...etc) résultant de l'écaillage de la croute océanique lors de la subduction.

http://planet-terre.ens-lyon.fr/planetterre/XML/db/planetterre/metadata/LOM-prisme-alpes.xml

Les conditions métamorphiques évoluent d'ouest en est, depuis les conditions du faciès des schistes bleus de basse température (8 kbar -300°C) pour les unités les plus à l'ouest jusque à la transition éclogite-schistes bleus (13 kbar -450°) pour les unités les plus à l'est.

http://planet-terre.ens-lyon.fr/planetterre/XML/db/planetterre/metadata/LOM-prisme-alpes.xml
Le fonctionnement des prismes d'accrétion permet d'expliquer à la fois la genèse de certaines roches métamorphiques de haute pression et l'exhumation de ces mêmes roches de HP/BT.

- 1^{er} modèle (Platt ,1986): Le sous-placage, au cours du temps, de matériel sédimentaire produit un épaississement important du prisme générant progressivement son soulèvement, accommodé en surface par de l'extension puis de l'érosion.

- 2eme modèle (Cloos (1982), Allemand et Lardeaux (1997)): Mécanisme de coin de convection. Il s'agit de la création d'un courant de retour dans un matériel de faible viscosité coincé entre deux plaques dans une zone de subduction.

- 3eme modèle (Chemenda et al., 1995). Fait intervenir les forces de flottabilité comme moteur de l'exhumation. Ce modèle est basé sur des différences de densité entre le matériel HP/BT de la base du prisme et son encaissant. Il se forme des écailles successives de grande dimension. Le prisme est alors constitué par l'accumulation d'écailles souscharriées.

Synthèse de l'histoire des Alpes corrélée aux mécanismes isostasiques

Permien: Croute continentale « normale »

4. EXEMPLES

Lithosphère

D'après les calculs, 300 m de subsidence permettent la sédimentation de 1500 m de Trias

4. EXEMPLES

Synthèse de l'histoire des Alpes corrélée aux mécanismes isostasiques

Jurassique moyen: Ouverture océanique.

L'amincissement de la croute entraîne une subsidence et une sédimentation syn-rift au niveau de la future marge

Synthèse de l'histoire des Alpes corrélée aux mécanismes isostasiques

Jurassique sup et Crétacé inf: L'océan grandit.

4. EXEMPLES

Pendant que la dorsale fonctionne, la lithosphère mantellique sous (et près de) la marge se refroidit et donc s'épaissit. Cet épaississement entraîne une subsidence et une sédimentation post-rift.

4. EXEMPLES

Synthèse de l'histoire des Alpes corrélée aux mécanismes isostasiques

Rappel

4. EXEMPLES

Synthèse de l'histoire des Alpes corrélée aux mécanismes isostasiques

Crétacé sup et tertiaire Subduction puis collision

4. EXEMPLES

Synthèse de l'histoire des Alpes corrélée aux mécanismes isostasiques

Les grands chevauchements se succèdent au cours de la convergence. Il en résulte un épaississement crustal qui double approximativement l'épaisseur totale de la croute. Pour respecter l'équilibre isostasique, au niveau des Alpes, la croute s'épaissit plus par sa racine (r) que par sa surface (a). On doit avoir le rapport r = 2,7 a / 0,6

4. EXEMPLES

Synthèse de l'histoire des Alpes corrélée aux mécanismes isostasiques

Oligocène, Miocène: Formation du bassin flexural

Au pied des grands chevauchements, sous l'effet de la surcharge, il y a flexion de la lithosphère, subsidence et création d'un bassin sédimentaire (bassin d'avant chaîne ou flexural ou bassin molassique)

Synthèse de l'histoire des Alpes corrélée aux mécanismes isostasiques

Quaternaire, actuel: Erosion et réajustement isostasique

4. EXEMPLES

Le raccourcissement est terminé. Le relief est peu a peu érodé. Cela entraîne une remontée du moho par réajustement isostasique.

D'après les calculs (ou les modélisations), 200 m d'érosion en surface fait remonter le moho de 800 m environs. Le rapport r = 2,7 a / 0,6 est toujours valable.

L'étude de marqueurs tectonique révèle une prédominance des failles normales dans toutes les zones internes des Alpes. L'extension parallèle à la chaîne est dominante.

Ce régime extensif est confirmé par les études sismotectoniques (mécanismes au foyer) et les données GPS. Ces études montrent une extension au cœur de la chaîne et une compression au niveau des bordures.

Sue et al., JGR, 1999

E. Calais et al., Geology, 2002

REMARQUE: Mécanismes au foyer (principes de sismotectonique)

compression

coulissage

extension

D'après la these de DELACOU Bastien, « **Évolution tectonique des Alpes occidentales** - rôle de l'extension de l'histoire tardive de l'arc alpin – »

La synthèse de ces informations, corrélée aux données gravimétriques et topographiques, permet de proposer un modèle d'évolution géodynamique de la chaîne alpine:

- Extension localisée dans la haute chaîne, suivante la forme arquée
- Compression localisée au pied de la topographie alpine

hypothèse d'étalement gravitaire

Schéma des forces dirigeant la compression mais aussi l'extension en zone de convergence de plaques.

D'après un schéma de cours de Michel Guiraud (prof de tectonique analytique à Dijon).

Quand les forces de volume deviennent prépondérantes dans la région de croûte épaisse :

→ Effondrements en surface (failles normales)

→ Etalement gravitaire, migration des chevauchements.

Quelques sources bibliographiques

-Dossier Pour La Science : La Terre à cœur ouvert, Juin 2010

-Conférence Hervé Martin – L'environnement de la Terre primitive - IUFM Marseille Avril 2012

-Conférence Pierre Thomas – Gravimetrie et isostasie – CBGA 2011

-Site Planète Terre, ENS Lyon

